Worst-case analysis and optimization of VLSI circuit performances

  • Authors:
  • A. Dharchoudhury;S. M. Kang

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

In this paper, we present a new approach for realistic worst-case analysis of VLSI circuit performances and a novel methodology for circuit performance optimization. Circuit performance measures are modeled as response surfaces of the designable and uncontrollable (noise) parameters. Worst-case analysis proceeds by first computing the worst-case circuit performance value and then determining the worst-case noise parameter values by solving a nonlinear programming problem. A new circuit optimization technique is developed to find an optimal design point at which all of the circuit specifications are met under worst-case conditions. This worst-case design optimization method is formulated as a constrained multicriteria optimization. The methodologies described in this paper are applied to several VLSI circuits to demonstrate their accuracy and efficiency