A material point method for snow simulation

  • Authors:
  • Alexey Stomakhin;Craig Schroeder;Lawrence Chai;Joseph Teran;Andrew Selle

  • Affiliations:
  • Walt Disney Animation Studios and University of California Los Angeles;University of California, Los Angeles;Walt Disney Animation Studios;Walt Disney Animation Studios and University of California Los Angeles;Walt Disney Animation Studios

  • Venue:
  • ACM Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Snow is a challenging natural phenomenon to visually simulate. While the graphics community has previously considered accumulation and rendering of snow, animation of snow dynamics has not been fully addressed. Additionally, existing techniques for solids and fluids have difficulty producing convincing snow results. Specifically, wet or dense snow that has both solid- and fluid-like properties is difficult to handle. Consequently, this paper presents a novel snow simulation method utilizing a user-controllable elasto-plastic constitutive model integrated with a hybrid Eulerian/Lagrangian Material Point Method. The method is continuum based and its hybrid nature allows us to use a regular Cartesian grid to automate treatment of self-collision and fracture. It also naturally allows us to derive a grid-based semi-implicit integration scheme that has conditioning independent of the number of Lagrangian particles. We demonstrate the power of our method with a variety of snow phenomena including complex character interactions.