Computer modelling of fallen snow

  • Authors:
  • Paul Fearing

  • Affiliations:
  • University of British Columbia

  • Venue:
  • Proceedings of the 27th annual conference on Computer graphics and interactive techniques
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a new model of snow accumulation and stability for computer graphics. Our contribution is divided into two major components, each essential for modelling the appearance of a thick layer of snowfall on the ground.Our accumulation model determines how much snow a particular surface receives, allowing for such phenomena as flake flutter, flake dusting and wind-blown snow. We compute snow accumulation by shooting particles upwards towards the sky, giving each source surface independent control over its own sampling density, accuracy and computation time. Importance ordering minimises sampling effort while maximising visual information, generating smoothly improving global results that can be interrupted at any point.Once snow lands on the ground, our stability model moves material away from physically unstable areas in a series of small, simultaneous avalanches. We use a simple local stability test that handles very steep surfaces, obstacles, edges, and wind transit. Our stability algorithm also handles other materials, such as flour, sand, and flowing water.