Invertible finite elements for robust simulation of large deformation

  • Authors:
  • G. Irving;J. Teran;R. Fedkiw

  • Affiliations:
  • Stanford University;Stanford University;Stanford University

  • Venue:
  • SCA '04 Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an algorithm for the finite element simulation of elastoplastic solids which is capable of robustly and efficiently handling arbitrarily large deformation. In fact, our model remains valid even when large parts of the mesh are inverted. The algorithm is straightforward to implement and can be used with any material constitutive model, and for both volumetric solids and thin shells such as cloth. We also provide a mechanism for controlling plastic deformation, which allows a deformable object to be guided towards a desired final shape without sacrificing realistic behavior. Finally, we present an improved method for rigid body collision handling in the context of mixed explicit/implicit time-stepping.