Folding and crumpling adaptive sheets

  • Authors:
  • Rahul Narain;Tobias Pfaff;James F. O'Brien

  • Affiliations:
  • University of California, Berkeley;University of California, Berkeley;University of California, Berkeley

  • Venue:
  • ACM Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a technique for simulating plastic deformation in sheets of thin materials, such as crumpled paper, dented metal, and wrinkled cloth. Our simulation uses a framework of adaptive mesh refinement to dynamically align mesh edges with folds and creases. This framework allows efficient modeling of sharp features and avoids bend locking that would be otherwise caused by stiff in-plane behavior. By using an explicit plastic embedding space we prevent remeshing from causing shape diffusion. We include several examples demonstrating that the resulting method realistically simulates the behavior of thin sheets as they fold and crumple.