Optimal auctions via the multiplicative weight method

  • Authors:
  • Anand Bhalgat;Sreenivas Gollapudi;Kamesh Munagala

  • Affiliations:
  • University of Pennsylvania, Philadelphia, PA, USA;Microsoft Research Search Labs, Mountain View, CA, USA;Duke University, Durham, NC, USA

  • Venue:
  • Proceedings of the fourteenth ACM conference on Electronic commerce
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We show that the multiplicative weight update method provides a simple recipe for designing and analyzing optimal Bayesian Incentive Compatible (BIC) auctions, and reduces the time complexity of the problem to pseudo-polynomial in parameters that depend on single agent instead of depending on the size of the joint type space. We use this framework to design computationally efficient optimal auctions that satisfy ex-post Individual Rationality in the presence of constraints such as (hard, private) budgets and envy-freeness. We also design optimal auctions when buyers and a seller's utility functions are non-linear. Scenarios with such functions include (a) auctions with "quitting rights", (b) cost to borrow money beyond budget, (c) a seller's and buyers' risk aversion. Finally, we show how our framework also yields optimal auctions for variety of auction settings considered in Alaei et al and Cai et al, albeit with pseudo-polynomial running times.