AFRA: a low cost high performance reliable routing for 3D mesh NoCs

  • Authors:
  • Sara Akbari;Ali Shafiee;Mahmoud Fathy;Reza Berangi

  • Affiliations:
  • University of Science and Technology, Iran;Sharif University of Technology, Iran;University of Science and Technology, Iran;University of Science and Technology, Iran

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Three-dimensional network-on-chips are suitable communication fabrics for high-density 3D many-core ICs. Such networks have shorter communication hop count, compared to 2D NoCs, and enjoy fast and power efficient TSV wires in vertical links. Unfortunately, the fabrication process of TSV connections has not matured yet, which results in poor vertical links yield. In this work, we address this challenge and introduce AFRA, a deadlock-free routing algorithm for 3D mesh-based NoCs that tolerates faults on vertical links. AFRA is designed to be simple, high performance, and robust. The simplicity is achieved by applying ZXY and XZXY routings in the absence and presence of fault, respectively. Furthermore, AFRA, as will be proved, is deadlock-free when all vertical faulty links have the same direction. This enables the routing to save virtual channels for performance rather than scarifying them for deadlock avoidance. Finally, AFRA provides robustness, which means supporting connection for all possible pairs of communicating nodes in high fault rates. AFRA is evaluated, though cycle accurate network simulation, and is compared with planar adaptive routing. Results reveal that AFRA significantly outperforms planar adaptive routing in both synthetic and real traffic patterns. In addition, the robustness of AFRA is calculated analytically.