A highly resilient routing algorithm for fault-tolerant NoCs

  • Authors:
  • David Fick;Andrew DeOrio;Gregory Chen;Valeria Bertacco;Dennis Sylvester;David Blaauw

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current trends in technology scaling foreshadow worsening transistor reliability as well as greater numbers of transistors in each system. The combination of these factors will soon make long-term product reliability extremely difficult in complex modern systems such as systems on a chip (SoC) and chip multiprocessor (CMP) designs, where even a single device failure can cause fatal system errors. Resiliency to device failure will be a necessary condition at future technology nodes. In this work, we present a network-on-chip (NoC) routing algorithm to boost the robustness in interconnect networks, by reconfiguring them to avoid faulty components while maintaining connectivity and correct operation. This distributed algorithm can be implemented in hardware with less than 300 gates per network router. Experimental results over a broad range of 2D-mesh and 2D-torus networks demonstrate 99.99% reliability on average when 10% of the interconnect links have failed.