Securing computer hardware using 3D integrated circuit (IC) technology and split manufacturing for obfuscation

  • Authors:
  • Frank Imeson;Ariq Emtenan;Siddharth Garg;Mahesh V. Tripunitara

  • Affiliations:
  • ECE, University of Waterloo, Canada;ECE, University of Waterloo, Canada;ECE, University of Waterloo, Canada;ECE, University of Waterloo, Canada

  • Venue:
  • SEC'13 Proceedings of the 22nd USENIX conference on Security
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The fabrication of digital Integrated Circuits (ICs) is increasingly outsourced. Given this trend, security is recognized as an important issue. The threat agent is an attacker at the IC foundry that has information about the circuit and inserts covert, malicious circuitry. The use of 3D IC technology has been suggested as a possible technique to counter this threat. However, to our knowledge, there is no prior work on how such technology can be used effectively. We propose a way to use 3D IC technology for security in this context. Specifically, we obfuscate the circuit by lifting wires to a trusted tier, which is fabricated separately. This is referred to as split manufacturing. For this setting, we provide a precise notion of security, that we call k-security, and a characterization of the underlying computational problems and their complexity. We further propose a concrete approach for identifying sets of wires to be lifted, and the corresponding security they provide. We conclude with a comprehensive empirical assessment with benchmark circuits that highlights the security versus cost trade-offs introduced by 3D IC based circuit obfuscation.