Measuring the gap between FPGAs and ASICs

  • Authors:
  • Ian Kuon;Jonathan Rose

  • Affiliations:
  • University of Toronto, Toronto, ON;University of Toronto, Toronto, ON

  • Venue:
  • Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents experimental measurements of the differences between a 90nm CMOS FPGA and 90nm CMOS Standard Cell ASICs in terms of logic density, circuit speed and power consumption. We are motivated to make these measurements to enable system designers to make better informed hoices between these two media and to give insight to FPGA makers on the deficiencies to attack and thereby improve FPGAs. In the paper, we describe the methodology by which the measurements were obtained and we show that, for circuits containing only combinational logic and flip-flops, the ratio of silicon area required to implement them in FPGAs and ASICs is on average 40. Modern FPGAs also contain "hard" blocks such as multiplier/accumulators and block memories and we find that these blocks reduce this average area gap significantly to as little as 21. The ratio of critical path delay, from FPGA to ASIC, is roughly 3 to 4, with less influence from block memory and hard multipliers. The dynamic power onsumption ratio is approximately 12 times and, with hard blocks, this gap generally becomes smaller.