A circuit-architecture co-optimization framework for exploring nonvolatile memory hierarchies

  • Authors:
  • Xiangyu Dong;Norman P. Jouppi;Yuan Xie

  • Affiliations:
  • Qualcomm Technology, Inc.;Hewlett-Packard Labs;Pennsylvania State University & AMD Research

  • Venue:
  • ACM Transactions on Architecture and Code Optimization (TACO)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many new memory technologies are available for building future energy-efficient memory hierarchies. It is necessary to have a framework that can quickly find the optimal memory technology at each hierarchy level. In this work, we first build a circuit-architecture joint design space exploration framework by combining RC circuit analysis and Artificial Neural Network (ANN)-based performance modeling. Then, we use this framework to evaluate some emerging nonvolatile memory hierarchies. We demonstrate that a Resistive RAM (ReRAM)-based cache hierarchy on an 8-core Chip-Multiprocessor (CMP) system can achieve a 24% Energy Delay Product (EDP) improvement and a 36% Energy Delay Area Product (EDAP) improvement compared to a conventional hierarchy with SRAM on-chip caches and DRAM main memory.