Parallelizing nonnumerical code with selective scheduling and software pipelining

  • Authors:
  • Soo-Mook Moon;Kemal Ebcioğlu

  • Affiliations:
  • Seoul National Univ., Seoul, Korea;IBM T. J. Watson Research Center, Yorktown Heights, NY

  • Venue:
  • ACM Transactions on Programming Languages and Systems (TOPLAS)
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

Instruction-level parallelism (ILP) in nonnumerical code is regarded as scarce and hard to exploit due to its irregularity. In this article, we introduce a new code-scheduling technique for irregular ILP called “selective scheduling” which can be used as a component for superscalar and VLIW compilers. Selective scheduling can compute a wide set of independent operations across all execution paths based on renaming and forward-substitution and can compute available operations across loop iterations if combined with software pipelining. This scheduling approach has better heuristics for determining the usefulness of moving one operation versus moving another and can successfully find useful code motions without resorting to branch profiling. The compile-time overhead of selective scheduling is low due to its incremental computation technique and its controlled code duplication. We parallelized the SPEC integer benchmarks and five AIX utilities without using branch probabilities. The experiments indicate that a fivefold speedup is achievable on realistic resources with a reasonable overhead in compilation time and code expansion and that a solid speedup increase is also obtainable on machines with fewer resources. These results improve previously known characteristics of irregular ILP.