A compiler approach for reducing data cache energy

  • Authors:
  • W. Zhang;M. Karakoy;M. Kandemir;G. Chen

  • Affiliations:
  • Penn State University, University Park, PA;Imperial College, London, UK;Penn State University, University Park, PA;Penn State University, University Park, PA

  • Venue:
  • ICS '03 Proceedings of the 17th annual international conference on Supercomputing
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Silicon technology advances have made it possible to pack millions of transistors --- switching at high clock speeds --- on a single chip. While these advances bring unprecedented performance to electronic products, they pose difficult power/energy consumption problems. For example, large number of transistors in dense on-chip cache memories consume significant static (leakage) power even if the cache is not used by the current computation. While previous compiler research studied code and data restructuring for improving data cache performance, to our knowledge, there is no compiler-based study that targets data cache leakage power consumption. In this paper, we present code restructuring techniques for array-based and pointer-intensive applications for reducing data cache energy consumption. The idea is to let the compiler to analyze the code and insert instructions that turn off cache lines that keep variables not used by the current computation. This turning off does not destroy contents of a cache line, and waking up the cache line incurs very little overhead. Due to data locality, we find that at a given time only a small portion of the data cache needs to be active; the remaining part can be placed into a leakage-saving mode (state); i.e., they can be turned off. Our preliminary results indicate that the proposed strategy reduces the cache energy consumption significantly. We also show that several compiler optimizations increase the effectiveness of our strategy.