Gate-level power and current simulation of CMOS integrated circuits

  • Authors:
  • Alessandro Bogliolo;Luca Benini;Giovanni De Micheli;Bruno Riccó

  • Affiliations:
  • Univ. of Bologna, Bologna, Italy;Stanford Univ., Stanford, CA;Stanford Univ., Stanford, CA;Univ. of Bologna, Bologna, Italy

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems - Special issue on low power electronics and design
  • Year:
  • 1997

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we present a new gate-level approach to power and current simulation. We propose a symbolic model of complementary metal-oxide-semiconductor (CMOS) gates to capture the dependence of power consumption and current flows on input patterns and fan-in/fan-out conditions. Library elements are characterized and their models are used during event-driven logic simulation to provide power information and construct time-domain current waveforms. We provide both global and local pattern-dependent estimates of power consumption and current peaks (with accuracy of 6 and 10% from SPICE, respectively), while keeping performance comparable with traditional gate-level simulation with unit delay. We use VERILOG-XL as simulation engine to grant compatibility with design tools based on Verilog HDL. A Web-based user interface allows our simulator (PPP) to be accessed through the Internet using a standard web browser.