Position estimation for mobile robots in dynamic environments

  • Authors:
  • Dieter Fox;Wolfram Burgard;Sebastian Thrun;Armin B. Cremers

  • Affiliations:
  • -;-;-;-

  • Venue:
  • AAAI '98/IAAI '98 Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

For mobile robots to be successful, they have to navigate safely in populated and dynamic environments. While recent research has led to a variety of localization methods that can track robots well in static environments, we still lack methods that can robustly localize mobile robots in dynamic environments, in which people block the robot's sensors for extensive periods of time or the position of furniture may change. This paper proposes extensions to Markov localization algorithms enabling them to localize mobile robots even in densely populated environments. Two different filters for determining the "believability" of sensor readings are employed. These filters are designed to detect sensor readings that are corrupted by humans or unexpected changes in the environment. The technique was recently implemented and applied as part of an installation, in which a mobile robot gave interactive tours to visitors of the "Deutsches Museum Bonn." Extensive empirical tests involving datasets recorded during peak traffic hours in the museum demonstrate that this approach is able to accurately estimate the robot's position in more than 98% of the cases even in such highly dynamic environments.