A microarchitectural-level step-power analysis tool

  • Authors:
  • Wael El-Essawy;David H. Albonesi;Balaram Sinharoy

  • Affiliations:
  • University of Rochester;University of Rochester;IBM Corporation

  • Venue:
  • Proceedings of the 2002 international symposium on Low power electronics and design
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Clock gating is an effective means for reducing average power consumption. However, clock gating can exacerbate maximum cycle-to-cycle current swings, or the step-power (Ldi/dt) problem. We present a microarchitecture-level step-power simulator and demonstrate its use in exploring how design alternatives impact relative step-power levels. We show how the tool can be used to identify major sources of high microprocessor step-power events. Our experiments indicate that branch mispredictions are a major cause of high step-power occurrences. We also show that high step-power events are infrequent which suggest that architectural techniques may limit step-power at potentially low performance cost.