A Polynomial Time Algorithm for Reconfiguring Multiple-Track Models

  • Authors:
  • T. A. Varvarigou;V. P. Roychowdhury;T. Kailth

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1993

Quantified Score

Hi-index 14.99

Visualization

Abstract

A polynomial time algorithm for solving the combinatorial problem that underlies the reconfiguration issues in the m1/2-track-m-spare model, for any arbitrary m, is discussed. The following combinatorial problem is solved: Given a set of points in a two-dimensional grid, find a set of noninteracting straight lines such that every line starts at a point and connects to one of the boundaries of the grid, there are no more than m lines overlapping in any row or column of the grid, and there are no near-miss situations. The time complexity of the algorithm is shown to be O(m mod F mod /sup 2/), where mod F is the number of faulty processors.