Self-tallying Elections and Perfect Ballot Secrecy

  • Authors:
  • Aggelos Kiayias;Moti Yung

  • Affiliations:
  • -;-

  • Venue:
  • PKC '02 Proceedings of the 5th International Workshop on Practice and Theory in Public Key Cryptosystems: Public Key Cryptography
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Strong voter privacy, although an important property of an election scheme, is usually compromised in election protocol design in favor of other (desirable) properties. In this work we introduce a new election paradigm with strong voter privacy as its primary objective. Our paradigm is built around three useful properties of voting schemes we define: (1) Perfect Ballot Secrecy, ensures that knowledge about the partial tally of the ballots of any set of voters is only computable by the coalition of all the remaining voters (this property captures strong voter privacy as understood in real world elections). (2) Self-tallying, suggests that the post-ballot-casting phase is an open procedure that can be performed by any interested (casual) third party. Finally, (3) Dispute-freeness, suggests that disputes between active parties are prevented altogether, which is an important efficient integrity component.We investigate conditions for the properties to exist, and their implications. We present a novel voting scheme which is the first system that is dispute-free, self-tallying and supports perfect ballot secrecy. Previously, any scheme which supports (or can be modified to support) perfect ballot secrecy suffers from at least one of the following two deficiencies: it involves voter-to-voter interactions and/or lacks fault tolerance (one faulty participant would fail the election). In contrast, our design paradigm obviates the need for voter-to-voter interaction (due to its dispute-freeness and publicly verifiable messages), and in addition our paradigm suggests a novel "corrective fault tolerant" mechanism. This mechanism neutralizes faults occurring before and after ballot casting, while self-tallying prevents further faults. Additionally, the mechanism is secrecy-preserving and "adaptive" in the sense that its cost is proportional to the number of faulty participants. As a result, our protocol is more efficient and robust than previous schemes that operate (or can be modified to operate) in the perfect ballot secrecy setting.