MORPH: a system architecture for robust high performance using customization (an NSF 100 TeraOps point design study)

  • Authors:
  • A. A. Chien;R. K. Gupta

  • Affiliations:
  • -;-

  • Venue:
  • FRONTIERS '96 Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Computation
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

Achieving 100 TeraOps performance within a ten-year horizon will require massively-parallel architectures that exploit both commodity software and hardware technology for cost efficiency. Increasing clock rates and system diameter in clock periods will make efficient management of communication and coordination increasingly critical. Configurable logic presents a unique opportunity to customize bindings, mechanisms, and policies which comprise the interaction of processing, memory, I/O and communication resources. This programming flexibility, or customizability, can provide the key to achieving robust high performance. The Multiprocessor with Reconfigurable Parallel Hardware (MORPH) uses reconfigurable logic blocks integrated with the system core to control policies, interactions, and interconnections. This integrated configurability can improve the performance of local memory hierarchy, increase the efficiency of interprocessor coordination, or better utilize the network bisection of the machine. MORPH provides a framework for exploring such integrated application-specific customizability. Rather than complicate the situation, MORPH's configurability supports component software and interoperability frameworks, allowing direct support for application-specified patterns, objects, and structures. This paper reports the motivation and initial design of the MORPH system.