Performance-driven global placement via adaptive network characterization

  • Authors:
  • Mongkol Ekpanyapong;Sung Kyu Lim

  • Affiliations:
  • Georgia Institute of Technology;Georgia Institute of Technology

  • Venue:
  • Proceedings of the 2004 Asia and South Pacific Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Delay minimization continues to be an important objective in the design of high-performance computing system. In this paper, we present an effective methodology to guide the delay optimization process of the mincut-based global placement via adaptive sequential network characterization. The contribution of this work is the development of a fully automated approach to determine critical parameters related to performance-driven multi-level partitioning-based global placement with retiming. We validate our approach by incorporating this adaptive method into a state-of-the-art global placer GEO. Our A-GEO, the adaptive version of GEO, achieves 67% maximum and 22% average delay improvement over GEO.