Memory Efficient Acceleration Structures and Techniques for CPU-Based Volume Raycasting of Large Data

  • Authors:
  • Soren Grimm;Stefan Bruckner;Armin Kanitsar;Eduard Groller

  • Affiliations:
  • Vienna University of Technology, Austria;Vienna University of Technology, Austria;Tiani Medgraph AG Vienna, Austria;Vienna University of Technology, Austria

  • Venue:
  • VV '04 Proceedings of the 2004 IEEE Symposium on Volume Visualization and Graphics
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512x512x1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.