Customization of application specific heterogeneous multi-pipeline processors

  • Authors:
  • Swarnalatha Radhakrishnan;Hui Guo;Sri Parameswaran

  • Affiliations:
  • University of New South Wales, Sydney, Australia;University of New South Wales, Sydney, Australia;University of New South Wales, Sydney, Australia

  • Venue:
  • Proceedings of the conference on Design, automation and test in Europe: Proceedings
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we propose Application Specific Instruction Set Processors with heterogeneous multiple pipelines to efficiently exploit the available parallelism at instruction level. We have developed a design system based on the Thumb processor architecture. Given an application specified in C language, the design system can generate a processor with a number of pipelines specifically suitable to the application, and the parallel code associated with the processor. Each pipeline in such a processor is customized, and implements its own special instruction set so that the instructions can be executed in parallel with low hardware overhead. Our simulations and experiments with a group of benchmarks, largely from Mibench suite, show that on average, 77% performance improvement can be achieved compared to a single pipeline ASIP, with the overheads of 49% on area, 51% on leakage power, 17% on switching activity, and 69% on code size.