A streaming narrow-band algorithm: interactive computation and visualization of level sets

  • Authors:
  • Aaron E. Lefohn;Joe M. Kniss;Charles D. Hansen;Ross T. Whitaker

  • Affiliations:
  • University of Utah;University of Utah;University of Utah;University of Utah

  • Venue:
  • SIGGRAPH '05 ACM SIGGRAPH 2005 Courses
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization and computer graphics for applications such as segmentation, surface processing, and physically-based modeling. Their usefulness has been limited, however, by their high computational cost and reliance on signi£cant parameter tuning. This paper presents a solution to these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing level-set solutions at interactive rates. The proposed solution is based on a new, streaming implementation of the narrow-band algorithm. The new algorithm packs the level-set isosurface data into 2D texture memory via a multi-dimensional virtual memory system. As the level-set moves, this texture-based representation is dynamically updated via a novel GPU-to-CPU message passing scheme. By integrating the level-set solver with a real-time volume renderer, a user can visualize and intuitively steer the level-set surface as it evolves. We demonstrate the capabilities of this technology for interactive volume segmentation and visualization.