A linear-time approach for static timing analysis covering all process corners

  • Authors:
  • Sari Onaissi;Farid N. Najm

  • Affiliations:
  • University of Toronto, Toronto, Ontario, Canada;University of Toronto, Toronto, Ontario, Canada

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Manufacturing process variations lead to circuit timing variability and a corresponding timing yield loss. Traditional corner analysis consists of checking all process corners (combinations of process parameter extremes) to make sure that circuit timing constraints are met at all corners, typically by running static timing analysis (STA) at every corner. This approach is becoming too expensive due to the exponential increase in the number of corners with modern processes. As an alternative, we propose a linear-time approach for STA which covers all process corners in a single pass. Our technique assumes a linear dependence of delay on process parameters and provides tight bounds on the worst-case circuit delay. It exhibits high accuracy (within 1-3%) in practice and, if the circuit has m gates and n relevant process parameters, the complexity of the algorithm is O(mn).