EHSAT: an efficient RTL satisfiability solver using an extended DPLL procedure

  • Authors:
  • Shujun Deng;Jinian Bian;Weimin Wu;Xiaoqing Yang;Yanni Zhao

  • Affiliations:
  • Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China

  • Venue:
  • Proceedings of the 44th annual Design Automation Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an efficient algorithm to solve the satisfiability (SAT) problem for RTL designs using a complete hybrid branch-and-bound strategy with conflict-driven learning. The main framework is the extended Davis-Putnam-Logemann-Loveland procedure (DPLL) which is a unified procedure combining Boolean logic and arithmetic operations. A hybrid two-literal-watching scheme and interval reasoning based on RTL predicates are used as the powerful hybrid constraint propagation strategies. Conflict-based learning is also implemented as another important technique to enhance efficiency. Comparisons with a state-of-the-art RTL SAT solver, a SMT solver and an ILP solver show that EHSAT outperforms these solvers for RTL satisfiability problems.