Computing the Banzhaf power index in network flow games

  • Authors:
  • Yoram Bachrach;Jeffrey S. Rosenschein

  • Affiliations:
  • The Hebrew University of Jerusalem, Israel;The Hebrew University of Jerusalem, Israel

  • Venue:
  • Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Preference aggregation is used in a variety of multiagent applications, and as a result, voting theory has become an important topic in multiagent system research. However, power indices (which reflect how much "real power" a voter has in a weighted voting system) have received relatively little attention, although they have long been studied in political science and economics. The Banzhaf power index is one of the most popular; it is also well-defined for any simple coalitional game. In this paper, we examine the computational complexity of calculating the Banzhaf power index within a particular multiagent domain, a network flow game. Agents control the edges of a graph; a coalition wins if it can send a flow of a given size from a source vertex to a target vertex. The relative power of each edge/agent reflects its significance in enabling such a flow, and in real-world networks could be used, for example, to allocate resources for maintaining parts of the network. We show that calculating the Banzhaf power index of each agent in this network flow domain is #P-complete. We also show that for some restricted network flow domains there exists a polynomial algorithm to calculate agents' Banzhaf power indices.