A DP-network for optimal dynamic routing in network-on-chip

  • Authors:
  • Terrence Mak;Peter Y.K. Cheung;Wayne Luk;Kai Pui Lam

  • Affiliations:
  • Imperial College London, London, United Kingdom;Imperial College London, London, United Kingdom;Imperial College London, London, United Kingdom;The Chinese University of Hong Kong, Hong Kong, Hong Kong

  • Venue:
  • CODES+ISSS '09 Proceedings of the 7th IEEE/ACM international conference on Hardware/software codesign and system synthesis
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dynamic routing is desirable because of its substantial improvement in communication bandwidth and intelligent adaptation to faulty links and congested traffics. However, implementation of adaptive routing in a network-on-chip (NoC) system is not trivial and further complicated by the requirements of deadlock-free and real-time optimal decision making. In this paper, we present a deadlock-free routing architecture which employs a dynamic programming (DP) network to provide on-the-fly optimal path planning and network monitoring for packet switching. Also, a new routing strategy called k-step look ahead is introduced. This new strategy can substantially reduced the size of routing table and maintain a high quality of adaptation which leads to a scalable dynamic routing solution with minimal hardware overhead. Our results based on a cycle-accurate simulator demonstrate the effectiveness of the DP-network, which outperforms both the deterministic and adaptive routing algorithms in average delay on various traffic scenarios by 22.3%. Moreover, the hardware overhead for DP-network is insignificant based on the results obtained from the hardware implementations.