TLM+ modeling of embedded HW/SW systems

  • Authors:
  • Wolfgang Ecker;Volkan Esen;Robert Schwencker;Thomas Steininger;Michael Velten

  • Affiliations:
  • Infineon Technologies AG, Neubiberg, Germany;Infineon Technologies AG;Infineon Technologies AG;Infineon Technologies AG;Infineon Technologies AG, TU München

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Virtual Prototypes (VPs) based on Transaction Level Modeling (TLM) have become a de-facto standard in today's SoC design, enabling early SW development. However, due to the growing complexity of SoC architectures full system simulations (HW+SW) become a bottleneck reducing this benefit. Hence, it is necessary to develop modeling styles which allow for further abstraction beyond the currently applied TLM methodology. This paper introduces such a modeling style, referred to as TLM+. It enables a higher modeling abstraction through merging hardware dependent driver software at the lowest level with the HW interface. Thus, sequences of HW transactions can be merged to single HW/SW transactions while preserving both the HW architecture and the low-level to high-level SW interfaces. In order to maintain the ability to validate timing-critical paths, a new resource model concept is introduced which compensates the loss of timing information, induced by merging HW transactions. Experimental results show a speed-up of up to 1000x at a timing error of approximately 10%.