Probabilistic Distance-Based Arbitration: Providing Equality of Service for Many-Core CMPs

  • Authors:
  • Michael M. Lee;John Kim;Dennis Abts;Michael Marty;Jae W. Lee

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • MICRO '43 Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Emerging many-core chip multiprocessors will integrate dozens of small processing cores with an on-chip interconnect consisting of point-to-point links. The interconnect enables the processing cores to not only communicate, but to share common resources such as main memory resources and I/O controllers. In this work, we propose an arbitration scheme to enable equality of service (EoS) in access to a chip’s shared resources. That is, we seek to remove any bias in a core’s access to a shared resource based on its location in the CMP. We propose using probabilistic arbitration combined with distance-based weights to achieve EoS and overcome the limitation of conventional round-robin arbiter. We describe how nonlinear weights need to be used with probabilistic arbiters and propose three different arbitration weight metrics – fixed weight, constantly increasing weight, and variably increasing weight. By only modifying the arbitration of an on-chip router, we do not require any additional buffers or virtual channels and create a simple, low-cost mechanism for achieving EoS. We evaluate our arbitration scheme across a wide range of traffic patterns. In addition to providing EoS, the proposed arbitration has additional benefits which include providing quality-of-service features (such as differentiated service) and providing fairness in terms of both throughput and latency that approaches the global fairness achieved with age-base arbitration – thus, providing a more stable network by achieving high sustained throughput beyond saturation.