Multi-task dynamic mapping onto NoC-based MPSoCs

  • Authors:
  • Marcelo Mandelli;Alexandre Amory;Luciano Ost;Fernando Gehm Moraes

  • Affiliations:
  • PUCRS, Porto Alegre, Brazil;PUCRS, Porto Alegre, Brazil;LIRMM, Montpellier, France;PUCRS, Porto Alegre, Brazil

  • Venue:
  • Proceedings of the 24th symposium on Integrated circuits and systems design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Task mapping defines the best placement of a given task in the MPSoC, according to some criteria, as energy or Manhattan distance minimization. The ITRS roadmap forecast in a near future MPSoCs with hundreds of processing elements (PEs). Therefore, dynamic mapping heuristics are required. An important gap is observed in the mapping literature: the lack of proposals targeting multi-task dynamic mapping. In this context, the present work proposes an energy-aware dynamic task mapping heuristic, allowing multiple tasks allocation per PE. Experimental results are executed in an actual MPSoC running distributed applications. Comparing a single-task to the multi-task mapping, the energy spent in the NoC is reduced in average by 51% (best case: 72%), with an average execution time overhead of 18%. Besides the communication energy reduction, the multi-task mapping enables a greater number of applications executing simultaneously, or smaller MPSoCs, which reduces the system cost.