Multiscale vector volumes

  • Authors:
  • Lvdi Wang;Yizhou Yu;Kun Zhou;Baining Guo

  • Affiliations:
  • Tsinghua University;University of Illinois at Urbana-Champaign;Zhejiang University;Tsinghua University

  • Venue:
  • Proceedings of the 2011 SIGGRAPH Asia Conference
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce multiscale vector volumes, a compact vector representation for volumetric objects with complex internal structures spanning a wide range of scales. With our representation, an object is decomposed into components and each component is modeled as an SDF tree, a novel data structure that uses multiple signed distance functions (SDFs) to further decompose the volumetric component into regions. Multiple signed distance functions collectively can represent non-manifold surfaces and deliver a powerful vector representation for complex volumetric features. We use multiscale embedding to combine object components at different scales into one complex volumetric object. As a result, regions with dramatically different scales and complexities can co-exist in an object. To facilitate volumetric object authoring and editing, we have also developed a scripting language and a GUI prototype. With the help of a recursively defined spatial indexing structure, our vector representation supports fast random access, and arbitrary cross sections of complex volumetric objects can be visualized in real time.