Exploring the design space for a shared-cache multiprocessor

  • Authors:
  • B. A. Nayfeh;K. Olukotun

  • Affiliations:
  • Computer Systems Laboratory, Stanford University, CA;Computer Systems Laboratory, Stanford University, CA

  • Venue:
  • ISCA '94 Proceedings of the 21st annual international symposium on Computer architecture
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the near future, semiconductor technology will allow the integration of multiple processors on a chip or multichip-module (MCM). In this paper we investigate the architecture and partitioning of resources between processors and cache memory for single chip and MCM-based multiprocessors. We study the performance of a cluster-based multiprocessor architecture in which processors within a cluster are tightly coupled via a shared cluster cache for various processor-cache configurations. Our results show that for parallel applications, clustering via shared caches provides an effective mechanism for increasing the total number of processors in a system, without increasing the number of invalidations. Combining these results with cost estimates for shared cluster cache implementations leads to two conclusions: 1) For a four cluster multiprocessor with single chip clusters, two processors per cluster with a smaller cache provides higher performance and better cost/performance than a single processor with a larger cache and 2) this four cluster configuration can be scaled linearly in performance by adding processors to each cluster using MCM packaging techniques.