Parametric control of captured mesh sequences for real-time animation

  • Authors:
  • Dan Casas;Margara Tejera;Jean-Yves Guillemaut;Adrian Hilton

  • Affiliations:
  • University of Surrey, Guildford, United Kingdom;University of Surrey, Guildford, United Kingdom;University of Surrey, Guildford, United Kingdom;University of Surrey, Guildford, United Kingdom

  • Venue:
  • MIG'11 Proceedings of the 4th international conference on Motion in Games
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we introduce an approach to high-level parameterisation of captured mesh sequences of actor performance for real-time interactive animation control. High-level parametric control is achieved by non-linear blending between multiple mesh sequences exhibiting variation in a particular movement. For example walking speed is parameterised by blending fast and slow walk sequences. A hybrid non-linear mesh sequence blending approach is introduced to approximate the natural deformation of non-linear interpolation techniques whilst maintaining the real-time performance of linear mesh blending. Quantitative results show that the hybrid approach gives an accurate real-time approximation of offline non-linear deformation. Results are presented for single and multi-dimensional parametric control of walking (speed/direction), jumping (heigh/distance) and reaching (height) from captured mesh sequences. This approach allows continuous real-time control of high-level parameters such as speed and direction whilst maintaining the natural surface dynamics of captured movement.