Prim-Dijkstra tradeoffs for improved performance-driven routing tree design

  • Authors:
  • C. J. Alpert;T. C. Hu;J. H. Huang;A. B. Kahng;D. Karger

  • Affiliations:
  • Dept. of Comput. Sci., California Univ., Los Angeles, CA;-;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

Analysis of Elmore delay in distributed RC tree structures shows the influence of both tree cost and tree radius on signal delay in VLSI interconnects. We give new and efficient interconnection tree constructions that smoothly combine the minimum cost and the minimum radius objectives, by combining respectively optimal algorithms due to Prim (1957) and Dijkstra (1959). Previous “shallow-light” techniques are both less direct and less effective: in practice, our methods achieve uniformly superior cost-radius tradeoffs. Timing simulations for a range of IC and MCM interconnect technologies show that our wirelength savings yield reduced signal delays when compared to shallow-light or standard minimum spanning tree and Steiner tree routing