Energy-aware routing in hybrid optical network-on-chip for future multi-processor system-on-chip

  • Authors:
  • Lin Liu;Yuanyuan Yang

  • Affiliations:
  • -;-

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the development of Multi-Processor System-on-Chip (MPSoC) in recent years, the intra-chip communication is becoming the bottleneck of the whole system. Current electronic network-on-chip (NoC) designs face serious challenges, such as bandwidth, latency and power consumption. Optical interconnection networks are a promising technology to overcome these problems. In this paper, we study the routing problem in optical NoCs with arbitrary network topologies. Traditionally, a minimum hop count routing policy is employed for electronic NoCs, as it minimizes both power consumption and latency. However, due to the special architecture of current optical NoC routers, such a minimum-hop path may not be energy-wise optimal. Using a detailed model of optical routers we reduce the energy-aware routing problem into a shortest-path problem, which can then be solved using one of the many well known techniques. By applying our approach to different popular topologies, we show that the energy consumed in data communication in an optical NoC can be significantly reduced. We also propose the use of optical burst switching (OBS) in optical NoCs to reduce control overhead, as well as an adaptive routing mechanism to reduce energy consumption without introducing extra latency. Our simulation results demonstrate the effectiveness of the proposed algorithms.