Tunable sensors for process-aware voltage scaling

  • Authors:
  • Tuck-Boon Chan;Andrew B. Kahng

  • Affiliations:
  • UC San Diego, La Jolla, CA;UC San Diego, La Jolla, CA

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.