A new grid structure for domain extension

  • Authors:
  • Bo Zhu;Wenlong Lu;Matthew Cong;Byungmoon Kim;Ronald Fedkiw

  • Affiliations:
  • Stanford University;Stanford University;Stanford University;Adobe Systems Inc.;Stanford University

  • Venue:
  • ACM Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an efficient grid structure that extends a uniform grid to create a significantly larger far-field grid by dynamically extending the cells surrounding a fine uniform grid while still maintaining fine resolution about the regions of interest. The far-field grid preserves almost every computational advantage of uniform grids including cache coherency, regular subdivisions for parallelization, simple data layout, the existence of efficient numerical discretizations and algorithms for solving partial differential equations, etc. This allows fluid simulations to cover large domains that are often infeasible to enclose with sufficient resolution using a uniform grid, while still effectively capturing fine scale details in regions of interest using dynamic adaptivity.