Stochastic modeling of large-scale solid-state storage systems: analysis, design tradeoffs and optimization

  • Authors:
  • Yongkun Li;Patrick P.C. Lee;John C.S. Lui

  • Affiliations:
  • The Chinese University of Hong Kong, Hong Kong, Hong Kong;The Chinese University of Hong Kong, Hong Kong, Hong Kong;The Chinese University of Hong Kong, Hong Kong, Hong Kong

  • Venue:
  • Proceedings of the ACM SIGMETRICS/international conference on Measurement and modeling of computer systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Solid state drives (SSDs) have seen wide deployment in mobiles, desktops,and data centers due to their high I/O performance and low energy consumption. As SSDs write data out-of-place, garbage collection (GC) is required to erase and reclaim space with invalid data. However, GC poses additional writes that hinder the I/O performance, while SSD blocks can only endure a finite number of erasures. Thus, there is a performance-durability tradeoff on the design space of GC. To characterize the optimal tradeoff, this paper formulates an analytical model that explores the full optimal design space of any GC algorithm. We first present a stochastic Markov chain model that captures the I/O dynamics of large-scale SSDs, and adapt the mean-field approach to derive the asymptotic steady-state performance. We further prove the model convergence and generalize the model for all types of workload. Inspired by this model, we propose a randomized greedy algorithm (RGA) that can operate along the optimal tradeoff curve with a tunable parameter. Using trace-driven simulation on DiskSim with SSD add-ons, we demonstrate how RGA can be parameterized to realize the performance-durability tradeoff.