Modeling and analysis of fault-tolerant distributed memories for networks-on-chip

  • Authors:
  • Abbas BanaiyanMofrad;Nikil Dutt;Gustavo Girão

  • Affiliations:
  • University of California, Irvine, CA;University of California, Irvine, CA;Federal University of Rio Grande do Sul, Porto Alegre, Brazil

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Advances in technology scaling increasingly make Network-on-Chips (NoCs) more susceptible to failures that cause various reliability challenges. With increasing area occupied by different on-chip memories, strategies for maintaining fault-tolerance of distributed on-chip memories become a major design challenge. We propose a system-level design methodology for scalable fault-tolerance of distributed on-chip memories in NoCs. We introduce a novel reliability clustering model for fault-tolerance analysis and shared redundancy management of on-chip memory blocks. We perform extensive design space exploration applying the proposed reliability clustering on a block-redundancy fault-tolerant scheme to evaluate the tradeoffs between reliability, performance, and overheads. Evaluations on a 64-core chip multiprocessor (CMP) with an 8x8 mesh NoC show that distinct strategies of our case study may yield up to 20% improvements in performance gains and 25% improvement in energy savings across different benchmarks, and uncover interesting design configurations.