On-chip process variations compensation using an analog adaptive body bias (A-ABB)

  • Authors:
  • Hassan Mostafa;Mohab Anis;Mohamed Elmasry

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada;Department of Electronics Engineering, American University in Cairo, Cairo, Egypt;Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

An analog adaptive body bias (A-ABB) circuit is proposed in this paper. The A-ABB is used to compensate for die-to-die (D2D) and within-die (WID) parameter variations and accordingly, improves the circuit yield regarding the speed, the dynamic power, and the leakage power. The A-ABB consists of threshold voltage estimation circuits and analog control of the body bias performed by on-chip amplifier circuits. Circuit level simulation results of a circuit block case study, extracted from a real microprocessor critical path, referring to an industrial hardware-calibrated 65-nm CMOS technology transistor model, are demonstrated. This study shows that the proposed A-ABB reduces the standard deviations of the frequency, the dynamic power and the leakage power by factors of 6.6×, 8.8× and 3.3× respectively, when both D2D and WID variations are considered. In addition, in this presented case study, initial total yields of 16.8% and 5.2% are improved to 99.9% and 84.1%, respectively. The advantage of the proposed A-ABB is its lower area overhead allowing it to be used at lower granularity level than that of the previously published ABB circuits.