Energy-efficient signal processing using FPGAs

  • Authors:
  • Seonil Choi;Ronald Scrofano;Viktor K. Prasanna;Ju-Wook Jang

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA;Sogang University, Seoul, Korea

  • Venue:
  • FPGA '03 Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present techniques for energy-efficient design at the algorithm level using FPGAs. We then use these techniques to create energy-efficient designs for two signal processing kernel applications: fast Fourier transform (FFT) and matrix multiplication. We evaluate the performance, in terms of both latency and energy efficiency, of FPGAs in performing these tasks. Using a Xilinx Virtex-II as the target FPGA, we compare the performance of our designs to those from the Xilinx library as well as to conventional algorithms run on the PowerPC core embedded in the Virtex-II Pro and the Texas Instruments TMS320C6415. Our evaluations are done both through estimation based on energy and latency equations and through low-level simulation. For FFT, our designs dissipated an average of 60% less energy than the design from the Xilinx library and 56% less than the DSP. Our designs showed a factor of 10 improvement over the embedded processor. These results provide concrete evidence to substantiate the idea that FPGAs can outperform DSPs and embedded processors in signal processing. Further, they show that FPGAs can achieve this performance while still dissipating less energy than the other two types of devices.