Approximation of Curvature-Constrained Shortest Paths through a Sequence of Points

  • Authors:
  • Jae-Ha Lee;Otfried Cheong;Woo-Cheol Kwon;Sung Yong Shin;Kyung-Yong Chwa

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • ESA '00 Proceedings of the 8th Annual European Symposium on Algorithms
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most 1, and let X denote a sequence of n points. Let s be the length of the shortest curvature-constrained path for B that visits the points of X in the given order. We show that if the points of X are given on-line and the robot has to respond to each point immediately, there is no strategy that guarantees a path whose length is at most f(n)s, for any finite function f(n). On the other hand, if all points are given at once, a path with length at most 5.03s can be computed in linear time. In the semi-online case, where the robot not only knows the next input point but is able to "see" the future input points included in the disk with radius R around the robot, a path of length (5.03 + O(1/R))s can be computed.