Towards the compositional verification of real-time UML designs

  • Authors:
  • Holger Giese;Matthias Tichy;Sven Burmester;Wilhelm Schäfer;Stephan Flake

  • Affiliations:
  • University of Paderborn, Paderborn, Germany;University of Paderborn, Paderborn, Germany;University of Paderborn, Paderborn, Germany;University of Paderborn, Paderborn, Germany;University of Paderborn, Paderborn, Germany

  • Venue:
  • Proceedings of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of software engineering
  • Year:
  • 2003

Quantified Score

Hi-index 0.05

Visualization

Abstract

Current techniques for the verification of software as e.g. model checking are limited when it comes to the verification of complex distributed embedded real-time systems. Our approach addresses this problem and in particular the state explosion problem for the software controlling mechatronic systems, as we provide a domain specific formal semantic definition for a subset of the UML 2.0 component model and an integrated sequence of design steps. These steps prescribe how to compose complex software systems from domain-specific patterns which model a particular part of the system behavior in a well-defined context. The correctness of these patterns can be verified individually because they have only simple communication behavior and have only a fixed number of participating roles. The composition of these patterns to describe the complete component behavior and the overall system behavior is prescribed by a rigorous syntactic definition which guarantees that the verification of component and system behavior can exploit the results of the verification of individual patterns.