Hardware accelerated ambient occlusion techniques on GPUs

  • Authors:
  • Perumaal Shanmugam;Okan Arikan

  • Affiliations:
  • University of Texas at Austin;University of Texas at Austin

  • Venue:
  • Proceedings of the 2007 symposium on Interactive 3D graphics and games
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce a visually pleasant ambient occlusion approximation running on real-time graphics hardware. Our method is a multi-pass algorithm that separates the ambient occlusion problem into high-frequency, detailed ambient occlusion and low-frequency, distant ambient occlusion domains, both capable of running independently and in parallel. The high-frequency detailed approach uses an image-space method to approximate the ambient occlusion due to nearby occluders caused by high surface detail. The low-frequency approach uses the intrinsic properties of a modern GPU to greatly reduce the search area for large and distant occluders with the help of a low-detail approximated version of the occluder geometry. Our method utilizes the highly parallel, stream processors (GPUs) to perform real-time visually pleasant ambient occlusion. We show that our ambient occlusion approximation works on a wide variety of applications such as molecular data visualization, dynamic deformable animated models, highly detailed geometry. Our algorithm demonstrates scalability and is well-suited for the current and upcoming graphics hardware.