On the use of Bloom filters for defect maps in nanocomputing

  • Authors:
  • Gang Wang;Wenrui Gong;Ryan Kastner

  • Affiliations:
  • University of California, Santa Barbara, CA;University of California, Santa Barbara, CA;University of California, Santa Barbara, CA

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

While the exact manufacturing process for nanoscale computing devices is uncertain, it is abundantly clear that future technology nodes will see an increase in defect rates. Therefore, it is of paramount importance to construct new architectures and design methodologies that can tolerate large numbers of defects. Defect maps are a necessity in the future design flows, and research on their practical construction is essential. In this work, we study the use of Bloom filters as a data structure for defect maps. We show that Bloom filters provide the right tradeoff between accuracy and space-efficiency. In particular, they can help simplify the nanosystem design flow by embedding defect information within the nanosystem delivered by the manufacturers. We develop a novel nanoscale memory design that uses this concept. It does not rely on a voting strategy, and utilizes the device redundancy more effectively than existing approaches.