Performance and power evaluation of a 3D CMOS/nanomaterial reconfigurable architecture

  • Authors:
  • Chen Dong;Deming Chen;Sansiri Tanachutiwat;Wei Wang

  • Affiliations:
  • University of Illinois, Urbana-Champaign;University of Illinois, Urbana-Champaign;Indiana University-Purdue University at Indianapolis;Indiana University-Purdue University at Indianapolis

  • Venue:
  • Proceedings of the 2007 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce a novel reconfigurable architecture, named 3D nFPGA, which utilizes 3D integration techniques and new nanoscale materials synergistically. The proposed architecture is based on CMOS-nano hybrid techniques that incorporate nanomaterials such as carbon nanotube bundles and nanowire crossbars into CMOS fabrication process. Using unique features of FPGAs and a novel 3D stacking method enabled by the application of nanomaterials, 3D nFPGA obtains a 4.5X footprint reduction compared to traditional CMOS-based 2D FPGAs. With a customized design automation flow, we evaluate the performance and power of 3D nFPGA driven by the 20 largest MCNC benchmarks. Results demonstrate that 3D nFPGA is able to provide a performance gain of 2.6X with a small power overhead comparing to the CMOS 2D FPGA architecture.