Bounded Semantics of CTL and SAT-Based Verification

  • Authors:
  • Wenhui Zhang

  • Affiliations:
  • Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences, Beijing, China 100080

  • Venue:
  • ICFEM '09 Proceedings of the 11th International Conference on Formal Engineering Methods: Formal Methods and Software Engineering
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bounded model checking has been proposed as a complementary approach to BDD based symbolic model checking for combating the state explosion problem, esp. for efficient error detection. This has led to a lot of successful work with respect to error detection in the checking of LTL, ACTL (the universal fragment of CTL) and ACTL* properties by satisfiability testing. The use of bounded model checking for verification (in contrast to error detection) of LTL and ACTL properties has later also been studied. This paper studies the potentials and limitations of bounded model checking for the verification of CTL and CTL* formulas. On the theoretical side, we first provide a framework for discussion of bounded semantics, which serves as the basis for bounded model checking, then extend the bounded semantics of ACTL to a bounded semantics of CTL, and discuss the limitation of developing such a bounded semantics for CTL*. On the practical side, a deduction of a SAT-based bounded model checking approach for ACTL properties from the bounded semantics of CTL is demonstrated, and a comparison of such an approach with BDD-based model checking is presented based on experimental results.