Dynamic Load Balancing for Parallel Polygon Rendering

  • Authors:
  • Scott Whitman

  • Affiliations:
  • David Sarnoff Research Center

  • Venue:
  • IEEE Computer Graphics and Applications
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

Using parallel processing for visualization speeds up computer graphics rendering of complex data sets. A parallel algorithm designed for polygon scan conversion and rendering is presented which supports fast rendering of highly complex data sets using advanced lighting models. Dedicated graphics rendering engines do not necessarily suit such data sets, although they can support real-time update of moderately complex scenes using simple lighting. Advantages to using a software-based approach include the feasibility of adding special rendering features to the program and the capability of integrating a parallel scientific application with a parallel graphics renderer. A new work decomposition strategy presented, called task adaptive, is based on dynamically partitioning the amount of computational work left at a given time. The algorithm uses a heuristic for dynamic task decomposition in which image space tasks are partitioned without requiring interruption of the partitioned processor. A sophisticated memory referencing strategy lets local memory access graphics data during rendering. This permits implementation of the algorithm on a distributed memory multiprocessor. An in-depth analysis of the overhead costs accompanying parallel processing shows where performance is adequate or could be improved.