Vectorless verification of RLC power grids with transient current constraints

  • Authors:
  • Xuanxing Xiong;Jia Wang

  • Affiliations:
  • Illinois Institute of Technology, Chicago, IL;Illinois Institute of Technology, Chicago, IL

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Vectorless power grid verification is a powerful method that evaluates worst-case voltage noises without detailed current waveforms using optimization techniques. It is extremely challenging when considering RLC power grids since inductors are difficult to tackle and multiple time steps should be evaluated after the discretization of the system equation. In this paper, we study integrated RLC power grids with both VDD and GND networks and rigorously prove that their vectorless verification can be decomposed into two sub-problems -- the well-studied transient power grid analysis problem and an optimization problem that maximizes an affine function of currents under current constraints. We further introduce transient constraints to restrict the waveform of each current source for realistic scenarios and design the RLCVN algorithm to solve the vectorless verification problem of RLC power grids. Results confirm that our algorithm is an effective approach for practical RLC power grid verification, and the proposed transient constraints make the noise estimations more realistic.