A scalable, multi-thread, multi-issue array processor architecture for DSP applications based on extended tomasulo scheme

  • Authors:
  • Mladen Bereković;Tim Niggemeier

  • Affiliations:
  • IMEC, Belgium;IBM Deutschland Entwicklung GmbH, Germany

  • Venue:
  • SAMOS'06 Proceedings of the 6th international conference on Embedded Computer Systems: architectures, Modeling, and Simulation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A scalable, distributed micro-architecture is presented that emphasizes on high performance computing for digital signal processing applications by combining high frequency design techniques with a very high degree of parallel processing on a chip. The architecture is based on a superscalar processor model with out-of-order execution, that supports specialized, complex DSP function units, and simultaneous instruction issue from multiple independent threads (SMT). Consequent application of fine clustering reduces the cycle-time for wire-sensitive building blocks of the processor like the register file and leads to a distributed architecture model, where independent thread processing units, ALUs, registers files and memories are distributed across the chip and communicate with each other by special networks, forming a ”network-on-a-chip” (NOC) [1]. The communication protocol is a modified version of Tomasulo's scheme [2], that was extended to eliminate all central control structures for the data flow and to support multithreading. The performance of the architecture is scalable with both the number of function units and the number of thread units without having any impact on the processors cycle-time.